Cho \(\sin \alpha = {{12} \over {13}},\,\,\left( {{\pi \over 2} < \alpha < \pi } \right)\). Khi đó \(\cot \alpha = ?\)
Giải chi tiết:

Cách 1:
Ta có:
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\left( {{{12} \over {13}}} \right)^2} + {\cos ^2}\alpha = 1 \Leftrightarrow {\cos ^2}\alpha = {{25} \over {169}} \Leftrightarrow \left[ \matrix{ \cos \alpha = {5 \over {13}} \hfill \cr \cos \alpha = - {5 \over {13}} \hfill \cr} \right.\)
Vì \({\pi \over 2} < \alpha < \pi \Rightarrow \cos \alpha < 0 \Rightarrow \cos \alpha = - {5 \over {13}} \Rightarrow \,\cot \alpha = {{\cos \alpha } \over {\sin \alpha }} = {{ - {5 \over {13}}} \over {{{12} \over {13}}}} = - {5 \over {12}}\)
Cách 2:
Ta có:
\(1 + {\cot ^2}\alpha = {1 \over {{{\sin }^2}\alpha }} \Leftrightarrow 1 + {\cot ^2}\alpha = {1 \over {{{\left( {{{12} \over {13}}} \right)}^2}}} \Leftrightarrow {\cot ^2}\alpha = {{25} \over {144}} \Leftrightarrow \left[ \matrix{ \cot \alpha = {5 \over {12}} \hfill \cr \cot \alpha = - {5 \over {12}} \hfill \cr} \right.\)
Vì \({\pi \over 2} < \alpha < \pi \Rightarrow \left\{ \matrix{ \sin \alpha > 0 \hfill \cr \cos \alpha < 0 \hfill \cr} \right. \Rightarrow \cot \alpha < 0 \Rightarrow \,\cot \alpha = - {5 \over {12}}\).
Chọn: D.