Cho phương trình: \({x^2} + mx + 4 = 0\) (m là tham số)
a) Tìm điều kiện của \(m\) để phương trình có nghiệm.
b) Tìm \(m\) sao cho phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\frac{1}{{x_1^4}} + \frac{1}{{x_2^4}} = \frac{{257}}{{256}}\)
Giải chi tiết:
a) Tìm điều kiện của \(m\) để phương trình có nghiệm.
\({x^2} + mx + 4 = 0\) có các hệ số \(a = 1,b = m,c = 4\)
\( \Rightarrow \Delta = {m^2} - 16.\)
Phương trình có nghiệm khi và chỉ khi \(\Delta \ge 0 \Leftrightarrow {m^2} - 16 \ge 0 \Leftrightarrow \left( {m - 4} \right)\left( {m + 4} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}m < - 4\\m > 4\end{array} \right.\)
b) Tìm m sao cho phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\frac{1}{{x_1^4}} + \frac{1}{{x_2^4}} = \frac{{257}}{{256}}\)
Từ điều kiện ta thấy \({x_1},{x_2} \ne 0\) nên \({0^2} + m.0 + 4 \ne 0 \Leftrightarrow 4 \ne 0\) (luôn đúng).
Do đó với \(\left[ \begin{array}{l}m < - 4\\m > 4\end{array} \right.\) thì phương trình có hai nghiệm \({x_1},{x_2} \ne 0\).
Áp dụng hệ thức Viet cho phương trình ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - m\\{x_1}.{x_2} = 4\end{array} \right.\)
Theo đề ra ta có:
\(\begin{array}{l}\,\,\,\,\,\,\frac{1}{{x_1^4}} + \frac{1}{{x_2^4}} = \frac{{257}}{{256}} \Leftrightarrow \frac{{x_1^4 + x_2^4}}{{x_1^4.x_2^4}} = \frac{{257}}{{256}}\\ \Leftrightarrow \frac{{{{\left( {x_1^2 + x_2^2} \right)}^2} - 2x_1^2x_2^2}}{{{{\left( {{x_1}{x_2}} \right)}^4}}} = \frac{{257}}{{256}}\\ \Leftrightarrow \frac{{{{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]}^2} - 2{{\left( {{x_1}{x_2}} \right)}^2}}}{{{{\left( {{x_1}{x_2}} \right)}^4}}} = \frac{{257}}{{256}}\\ \Leftrightarrow \frac{{{{\left( {{m^2} - 8} \right)}^2} - 2.16}}{{256}} = \frac{{257}}{{256}}\\ \Leftrightarrow {\left( {{m^2} - 8} \right)^2} = 289 \Leftrightarrow \left[ \begin{array}{l}{m^2} - 8 = 17\\{m^2} - 8 = - 17\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{m^2} = 25\\{m^2} = - 9\left( {ktm} \right)\end{array} \right. \Leftrightarrow m = \pm 5\left( {tm} \right)\end{array}\)
Vậy \(m = 5;m = - 5\) thỏa mãn yêu cầu bài toán.
Chọn D.