Cho nửa đường tròn tâm O đường kính AB. Vẽ bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung AC (M khác A, C và điểm chính giữa AC), BM cắt AC tại H. Gọi K là chân đường vuông góc kẻ từ H đến AB.
a) Chứng minh tứ giác BCHK là tứ giác nội tiếp
b) Chứng minh CA là phân giác của góc MCK
c) Kẻ CP vuông góc với BM \(\left( {P \in BM} \right)\) và trên đoạn thẳng BM lấy điểm E sao cho BE = AM. Chứng minh ME = 2CP
Giải chi tiết:
a) Chứng minh tứ giác CHKB là tứ giác nội tiếp.
Xét tứ giác BCHK có:
\(\widehat {HCB} = {90^0}\) (góc nội tiếp chắn nửa đường tròn)
\(\widehat {HKB} = {90^0}\) (giả thiết)
\( \Rightarrow \widehat {HCB} + \widehat {HKB} = {90^0} + {90^0} = {180^0}\).
Vậy tứ giác \(CHKB\) là tứ giác nội tiếp (đpcm).
b) Chứng minh CA là phân giác của góc MCK.
- Tứ giác BCHK nội tiếp nên \(\widehat {ACK} = \widehat {MBA}\) (góc nội tiếp cùng chắn cung \(HK\)).
- \(\widehat {MCA} = \widehat {MBA}\) (góc nội tiếp cùng chắn cung MA của đường tròn tâm (O)).
Do đó \(\widehat {ACK} = \widehat {MBA} = \widehat {MCA}\) hay \(CA\) là tia phân giác của \(\widehat {MCK}\) (đpcm).
c) Chứng minh ME = 2CP.
Xét \(\Delta CMA\) và \(\Delta CEB\) có:
\(MA = EB\left( {gt} \right)\)
\(\widehat {MAC} = \widehat {EBC}\) (cùng chắn cung MC của đường tròn (O))
\(CA = CB\) (\(\Delta CAB\) vuông cân)
Do đó \(\Delta CMA = \Delta CEB\left( {c.g.c} \right)\)
\( \Rightarrow CM = CE\) (cạnh tương ứng) \( \Rightarrow \Delta CME\) cân tại \(C\).
Lại có \(\widehat {CMB} = \widehat {CAB} = {45^0}\) (cùng chắn cung \(CB\)) nên \(\widehat {CEM} = {45^0} \Rightarrow \widehat {MCE} = {90^0}\).
Vậy \(\Delta CME\) vuông cân tại \(C\).
Mà \(CP \bot ME\,\,\left( {gt} \right)\) nên \(CP\) là đường cao và cũng là đường trung tuyến của \(\Delta CME\).
Do đó \(PM = PE = CP \Rightarrow ME = 2CP\) (đpcm).