Cho đường tròn tâm O, đường kính AB = 2R. Trên đường tròn (O) lấy điểm C bất kì (C không trùng với A và B). Tiếp tuyến của đường tròn (O) tại A cắt tia BC ở điểm D. Gọi H là hình chiếu của A trên đường thẳng DO. Tia AH cắt đường tròn (O) tại điểm F (không trùng với A). Chứng minh
a) \(D{A^2} = DC.DB\)
b) Tứ giác AHCD nội tiếp.
c) \(CH \bot CF\)
d) \(\frac{{BH.BC}}{{BF}} = 2R\)
Giải chi tiết:
a) \(D{A^2} = DC.DB\)
Ta có \(\widehat {ACB} = {90^0}\) (góc nội tiếp chắn nửa đường tròn tâm O) \( \Rightarrow AC \bot BC\,\,hay\,\,\,AC \bot BD\).
Ta có:\(\widehat {DAB} = {90^0}\) ( Do DA là tiếp tuyến của đường tròn tâm O tại A).
Áp dụng hệ thức lượng trong tam giác vuông ABD vuông tại A có đường cao AC ta có \(D{A^2} = DC.DB\).
b) Tứ giác AHCD nội tiếp.
Xét tứ giác AHCD có \(\widehat {AHD} = \widehat {ACD} = {90^0} \Rightarrow \) Hai đỉnh C và H kề nhau cùng nhìn cạnh AD dưới góc 900
\( \Rightarrow \) Tứ giác AHCD nội tiếp (Tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh dưới các góc bằng nhau).
c) \(CH \bot CF\)
Do tứ giác AHCD nội tiếp nên \(\widehat {FHC} = \widehat {ADC}\) (cùng bù với \(\widehat {AHC}\)).
Xét tam giác FHC và tam giác ADC có:
\(\widehat {CFH} = \widehat {DAC}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC).
\(\widehat {FHC} = \widehat {ADC}\,\,\left( {cmt} \right)\);
\(\Rightarrow \Delta FHC\backsim \Delta ADC\,\,\left( g.g \right)\Rightarrow \widehat{FCH}=\widehat{ACD}\) (hai góc tương ứng)
Mà \(\widehat {ACD} = {90^0} \Rightarrow \widehat {FCH} = {90^0} \Rightarrow CH \bot CF\)
d) \(\frac{{BH.BC}}{{BF}} = 2R\)
Xét tam giác vuông OAD vuông tại A có OH là đường cao ta có \(O{A^2} = OD.OH\) (hệ thức lượng trong tam giác vuông)
Mà \(OA = OB = R \Rightarrow O{B^2} = OD.OH \Rightarrow \frac{{OB}}{{OH}} = \frac{{OD}}{{OB}}\).
Xét tam giác OBH và ODB có:
\(\widehat {BOD}\) chung;
\(\frac{{OB}}{{OH}} = \frac{{OD}}{{OB}}\,\,\left( {cmt} \right)\);
\(\Rightarrow \Delta OBH\backsim \Delta ODB\,\,\left( c.g.c \right)\Rightarrow \widehat{OBH}=\widehat{ODB}\)
Mà \(\widehat {ODB} = \widehat {CAF}\) (hai góc nội tiếp cùng chắn cung CH của đường tròn ngoại tiếp tứ giác AHCD).
\(\widehat {CAF} = \widehat {CBF}\) (hai góc nội tiếp cùng chắn cung CF của đường tròn (O))
\( \Rightarrow \widehat {OBH} = \widehat {CBF} \Rightarrow \widehat {OBH} + \widehat {HBC} = \widehat {CBF} + \widehat {HBC} \Rightarrow \widehat {OBC} = \widehat {HBF} = \widehat {ABC}\)
Xét tam giác BHF và tam giác BAC có:
\(\widehat {BFH} = \widehat {BCA} = {90^0}\) (góc BFC nội tiếp chắn nửa đường tròn (O));
\(\widehat {HBF} = \widehat {ABC}\,\,\left( {cmt} \right)\);
\(\Rightarrow \Delta BFH\backsim \Delta BCA\,\,\left( g.g \right)\Rightarrow \frac{BF}{BC}=\frac{BH}{BA}\Rightarrow \frac{BH.BC}{BF}=BA=2R\).