Cho đường tròn tâm \(O,\) bán kính \(R = 5\;cm\) có dây cung \(AB = 6\;cm.\) Tính khoảng cách \(d\) từ \(O\) tới đường thẳng \(AB.\)
Giải chi tiết:

Gọi \(H\) là hình chiếu của \(O\) trên dây \(AB \Rightarrow OH \bot AB \Rightarrow H\) là trung điểm của \(AB.\) (quan hệ vuông góc giữa đường kính và dây cung).
\( \Rightarrow OH = d\) và \(AH = \frac{{AB}}{2} = \frac{6}{2} = 3cm.\)
Áp dụng định lý Pi-ta-go cho tam giác \(AOH\) vuông tại \(H\) ta có:
\(\begin{array}{l}O{H^2} = O{A^2} - A{H^2} = {5^2} - {3^2} = {4^2}\ \Rightarrow d = OH = 4cm.\end{array}\)
Chọn C.