Cho biểu thức \(Q\left( x \right) = \frac{{5{x^2} + 6x + 2018}}{{x + 1}}.\) Tìm các giá trị nguyên của \(x\) để \(Q\left( x \right)\) là số nguyên.
Giải chi tiết:
Cho biểu thức \(Q\left( x \right) = \frac{{5{x^2} + 6x + 2018}}{{x + 1}}.\) Tìm các giá trị nguyên của \(x\) để \(Q\left( x \right)\) là số nguyên.
Điều kiện: \(x \ne - 1.\)
Ta có: \(Q\left( x \right) = \frac{{5{x^2} + 6x + 2018}}{{x + 1}} = \frac{{5{x^2} + 5x + x + 1 + 2017}}{{x + 1}}\)
\( = \frac{{5x\left( {x + 1} \right)}}{{x + 1}} + \frac{{x + 1}}{{x + 1}} + \frac{{2017}}{{x + 1}} = 5x + 1 + \frac{{2017}}{{x + 1}}.\) \(\begin{array}{l} \Rightarrow Q\left( x \right) \in Z \Leftrightarrow \left( {5x + 1 + \frac{{2017}}{{x + 1}}} \right) \in Z \Leftrightarrow \frac{{2017}}{{x + 1}} \in Z\;\;\left( {do\;\;x \in Z} \right)\\ \Leftrightarrow \left( {x + 1} \right) \in U\left( {2017} \right).\end{array}\)
Mà \(U\left( {2017} \right) = \left\{ { - 2017; - 1;\;1;\;2017} \right\}.\)
\( \Rightarrow \left[ \begin{array}{l}x + 1 = - 2017\\x + 1 = - 1\\x + 1 = 1\\x + 1 = 2017\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 2018\;\;\;\left( {tm} \right)\\x = - 2\;\;\;\left( {tm} \right)\\x = 0\;\;\;\;\left( {tm} \right)\\x = 2016\;\;\left( {tm} \right)\end{array} \right..\)
Vậy \(x \in \left\{ { - 2018;\; - 2;\;0;\;\;2016} \right\}.\)