Cho biểu thức \(P = \left( { \frac{{x - 6}}{{x + 3 \sqrt x }} - \frac{1}{{ \sqrt x }} + \frac{1}{{ \sqrt x + 3}}} \right): \frac{{2 \sqrt x - 6}}{{x + 1}} \) với \(x > 0, \; \;x \ne 9. \)
a) Rút gọn biểu thức P.
b) Tìm giá trị của x để \(P = 1. \)
Giải chi tiết:
a) Rút gọn biểu thức P.
Điều kiện: \(x > 0,\;x \ne 9.\)
\(\begin{array}{l}P = \left( {\frac{{x - 6}}{{x + 3\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{2\sqrt x - 6}}{{x + 1}}\\\;\;\; = \left( {\frac{{x - 6}}{{\sqrt x \left( {\sqrt x + 3} \right)}} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{2\left( {\sqrt x - 3} \right)}}{{x + 1}}\\\;\;\; = \frac{{x - 6 - \left( {\sqrt x + 3} \right) + \sqrt x }}{{\sqrt x \left( {\sqrt x + 3} \right)}}.\frac{{x + 1}}{{2\left( {\sqrt x - 3} \right)}}\\\;\;\; = \frac{{x - 6 - \sqrt x - 3 + \sqrt x }}{{\sqrt x \left( {\sqrt x + 3} \right)}}.\frac{{x + 1}}{{2\left( {\sqrt x - 3} \right)}}\\\;\;\; = \frac{{\left( {x - 9} \right)\left( {x + 1} \right)}}{{2\sqrt x \left( {x - 9} \right)}} = \frac{{x + 1}}{{2\sqrt x }}.\end{array}\)
b) Tìm giá trị của x để \(P = 1.\)
Điều kiện: \(x > 0,\;x \ne 9.\)
\(\begin{array}{l}P = 1 \Leftrightarrow \frac{{x + 1}}{{2\sqrt x }} = 1 \Leftrightarrow x + 1 = 2\sqrt x \Leftrightarrow x - 2\sqrt x + 1 = 0\\ \Leftrightarrow {\left( {\sqrt x - 1} \right)^2} = 0 \Leftrightarrow \sqrt x - 1 = 0 \Leftrightarrow \sqrt x = 1 \Leftrightarrow x = 1\;\;\left( {tm} \right).\end{array}\)
Vậy \(x = 1\) thì \(P = 1.\)