[LỜI GIẢI] Cho ;abxy là các số không âm. Khi đó ta có:  - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho ;abxy là các số không âm. Khi đó ta có: 

Cho ;abxy là các số không âm. Khi đó ta có: 

Câu hỏi

Nhận biết

Cho \(\;a,b,x,y\) là các số không âm. Khi đó, ta có:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(\left( {{\rm{ax}} + by} \right)\left( {bx + ay} \right) = ab{x^2} + {a^2}xy + {b^2}xy + ab{y^2} = \left( {{x^2} + {y^2}} \right)ab + {a^2}xy + {b^2}xy\).

Áp dụng bất đẳng thức Cauchy cho hai số không âm \({x^2},{y^2}\) ta có: \({x^2} + {y^2} \ge 2xy\).

Mặt khác, \(a;b\) là các số không âm nên \(ab \ge 0\). Do đó, ta có

 \(\left( {{x^2} + {y^2}} \right)ab + {a^2}xy + {b^2}xy \ge 2xy.ab + {a^2}xy + {b^2}xy = {\left( {a + b} \right)^2}xy\)

Suy ra ta có: \(\left( {{\rm{ax}} + by} \right)\left( {bx + ay} \right) \ge {\left( {a + b} \right)^2}xy\).

Chọn A.

Ý kiến của bạn