Cho \(a,b,c\) là các số đôi một khác nhau và \(a + b + c < 0\). Xét giá trị biểu thức\(P = {a^3} + {b^3} + {c^3} - 3abc\). Khi đó
Giải chi tiết:
Ta có:
\(\eqalign{ & P = {a^3} + {b^3} + {c^3} - 3abc = {\left( {a + b + c} \right)^3} - 3\left( {a + b + c} \right)\left( {ab + bc + ca} \right) \cr & = \left( {a + b + c} \right)\left[ {{{\left( {a + b + c} \right)}^2} - 3\left( {ab + bc + ca} \right)} \right] \cr & = \left( {a + b + c} \right)\left[ {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right] \cr} \)
Ta có:
\(\eqalign{ & {a^2} + {b^2} + {c^2} - ab - bc - ca = {1 \over 2}\left[ {\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ca + {a^2}} \right)} \right] \cr & = {1 \over 2}\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] > 0 \cr} \)
(vì \(a,b,c\) đôi một khác nhau)
Mặt khác theo giả thiết \(a + b + c < 0\). Do đó \(P < 0\)
Chọn B.