Cho \(a,b,c\) là 3 số không âm có tổng bằng 1. Giá trị lớn nhất của biểu thức \(S = abc\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)\) là:
Giải chi tiết:
Áp dụng bất đẳng thức Cauchy cho 3 số dương \(a,b,c\) ta có : \(abc \le {\left( {{{a + b + c} \over 3}} \right)^3}\).
Áp dụng bất đẳng thức Cauchy cho 3 số dương \(a + b,b + c,c + a\) ta có : \(\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \le {\left( {{{2a + 2b + 2c} \over 3}} \right)^3}\).
Nhân vế với vế ta có
\(S = abc\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \le {\left( {{{a + b + c} \over 3}} \right)^3}.{\left( {{{2a + 2b + 2c} \over 3}} \right)^3} = {\left( {{1 \over 3}} \right)^3}.{\left( {{2 \over 3}} \right)^3} = {{{{1.2}^3}} \over {{3^3}{{.3}^3}}} = {8 \over {729}}\)
Chọn A.