[LỜI GIẢI] Cho abc là 3 số không âm có tổng bằng 1. Giá trị lớn nhất của biểu thức  S = abc( a + b )( b + c )( - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho abc là 3 số không âm có tổng bằng 1. Giá trị lớn nhất của biểu thức  S = abc( a + b )( b + c )(

Cho abc là 3 số không âm có tổng bằng 1. Giá trị lớn nhất của biểu thức  S = abc( a + b )( b + c )(

Câu hỏi

Nhận biết

Cho \(a,b,c\) là 3 số không âm có tổng bằng 1. Giá trị lớn nhất của biểu thức \(S = abc\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Áp dụng bất đẳng thức Cauchy cho 3 số dương \(a,b,c\) ta có : \(abc \le {\left( {{{a + b + c} \over 3}} \right)^3}\).

Áp dụng bất đẳng thức Cauchy cho 3 số dương \(a + b,b + c,c + a\) ta có : \(\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \le {\left( {{{2a + 2b + 2c} \over 3}} \right)^3}\).

Nhân vế với vế ta có

\(S = abc\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \le {\left( {{{a + b + c} \over 3}} \right)^3}.{\left( {{{2a + 2b + 2c} \over 3}} \right)^3} = {\left( {{1 \over 3}} \right)^3}.{\left( {{2 \over 3}} \right)^3} = {{{{1.2}^3}} \over {{3^3}{{.3}^3}}} = {8 \over {729}}\)

Chọn A.

Ý kiến của bạn