[LỜI GIẢI] Các cạnh của tam giác ABC thỏa mãn hệ thức a^4 + b^4 = c^4. Khẳng định nào sau đây đúng.  - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Các cạnh của tam giác ABC thỏa mãn hệ thức a^4 + b^4 = c^4. Khẳng định nào sau đây đúng. 

Các cạnh của tam giác ABC thỏa mãn hệ thức a^4 + b^4 = c^4. Khẳng định nào sau đây đúng. 

Câu hỏi

Nhận biết

Các cạnh của tam giác ABC thỏa mãn hệ thức \({a^4} + {b^4} = {c^4}\). Khẳng định nào sau đây đúng.


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Từ giả thiết ta có:

\(\eqalign{  & {a^4} + {b^4} = {c^4} \Leftrightarrow {\left( {{a^2} - {b^2}} \right)^2} + 2{a^2}{b^2} = {c^4} \Leftrightarrow {c^4} - {\left( {{a^2} - {b^2}} \right)^2} = 2{a^2}{b^2}  \cr   &  \Leftrightarrow \left( {{c^2} - {a^2} + {b^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right) = 2{a^2}{b^2} \cr} \)

\( \Leftrightarrow {{{c^2} - {a^2} + {b^2}} \over {4S}}.{{{c^2} + {a^2} - {b^2}} \over {4S}} = {2 \over 4}.{\left( {{{ab} \over {2S}}} \right)^2}\) (*)

Áp dụng công thức cosin và công thức tính diện tích \(S = {1 \over 2}bc\sin A = {1 \over 2}ac\sin B = {1 \over 2}ab\sin C\)  ta có

(*)  \( \Leftrightarrow {{2bc\cos A} \over {2bc\sin A}}.{{2ac\cos B} \over {2ac\sin B}} = {2 \over 4}.{\left( {{{ab} \over {ab\sin C}}} \right)^2}\)

\( \Leftrightarrow \cot A.\cot B = {1 \over {2{{\sin }^2}C}} \Leftrightarrow {1 \over {\tan A}}.{1 \over {\tan B}} = {1 \over {2{{\sin }^2}C}} \Leftrightarrow \tan A.\tan B = 2{\sin ^2}C\)

Chọn B

Ý kiến của bạn