Biết rằng đường thẳng \(y = 2x + 3\) cắt parabol \(y = {x^2}\) tại hai điểm. Tọa độ các giao điểm là:
Giải chi tiết:
Ta có phương trình hoành độ giao điểm của hai đồ thị hàm số đã cho là:
\(\begin{array}{l}{x^2} = 2x + 3 \Leftrightarrow {x^2} - 2x - 3 = 0\\ \Leftrightarrow {x^2} - 3x + x - 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\\ + )\,\,\,x = 3 \Rightarrow y = {3^2} = 9 \Rightarrow A\left( {3;\,\,9} \right).\\ + )\,\,\,x = - 1 \Rightarrow y = {\left( { - 1} \right)^2} \Rightarrow B\left( { - 1;\,\,1} \right).\end{array}\)
Vậy hai đồ thị hàm số cắt nhau tại hai điểm phân biệt \(A\left( {3;\,\,9} \right)\) và \(B\left( { - 1;\,\,1} \right).\)
Chọn A.