[LỜI GIẢI] Biết rằng 12[ cos ( pi 3 - 2x ) - cos ( pi 2 + 2x ) ] - sin pi 12.cos ( pi 12 + 2x ) = sin ( ax + bp - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Biết rằng 12[ cos ( pi 3 - 2x ) - cos ( pi 2 + 2x ) ] - sin pi 12.cos ( pi 12 + 2x ) = sin ( ax + bp

Biết rằng 12[ cos ( pi 3 - 2x ) - cos ( pi 2 + 2x ) ] - sin pi 12.cos ( pi 12 + 2x ) = sin ( ax + bp

Câu hỏi

Nhận biết

Biết rằng \(\frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - 2x} \right) - \cos \left( {\frac{\pi }{2} + 2x} \right)} \right] - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\) với mọi giá trị của góc lượng giác x ; trong đó a là số tự nhiên, b là số hữu tỉ thuộc \(\left[ {0;\frac{1}{2}} \right]\). Mệnh đề nào sau đây đúng?


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(\frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - 2x} \right) - \cos \left( {\frac{\pi }{2} + 2x} \right)} \right] - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\)

\(\begin{array}{l} \Leftrightarrow \frac{1}{2}.\left( { - 2} \right).\sin \left( {\frac{{\frac{\pi }{3} - 2x + \frac{\pi }{2} + 2x}}{2}} \right).\sin \left( {\frac{{\frac{\pi }{3} - 2x - \frac{\pi }{2} - 2x}}{2}} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow - \sin \frac{{5\pi }}{{12}}.\sin \left( { - \frac{\pi }{{12}} - 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \sin \left( {\frac{\pi }{2} - \frac{\pi }{{12}}} \right).\sin \left( {\frac{\pi }{{12}} + 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \cos \frac{\pi }{{12}}.\sin \left( {\frac{\pi }{{12}} + 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \sin \left( {\frac{\pi }{{12}} + 2x - \frac{\pi }{{12}}} \right) = \sin \left( {ax + b\pi } \right) \Leftrightarrow \sin 2x = \sin \left( {ax + b\pi } \right)\\ \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 2k\,\,\,\,\left( {k \in Z} \right)\end{array} \right.\,\,\,\,\,\,\\Do\,\,\,\,b \in \left[ {0;\frac{1}{2}} \right] \Rightarrow b = 0 \Rightarrow a + b = 2.\end{array}\)

Chọn D.

Ý kiến của bạn