a) Cho \(\sin x = \frac{1}{4}\) với \(\frac{\pi }{2} < x < \pi \). Tính \(H = \cos \left( {5\pi - x} \right) + \tan \left( {x + \frac{{3\pi }}{2}} \right)\).
b) Chứng minh \(\frac{{\sin 2x}}{{\tan \left( {\frac{\pi }{4} - x} \right)\left( {1 + \sin 2x} \right)}} = \tan 2x\)
Giải chi tiết:
a) Cho \(\sin x = \frac{1}{4}\) với \(\frac{\pi }{2} < x < \pi \). Tính \(H = \cos \left( {5\pi - x} \right) + \tan \left( {x + \frac{{3\pi }}{2}} \right)\).
Ta có: \(\sin x = \frac{1}{4} \Rightarrow {\sin ^2}x = \frac{1}{{16}} \Rightarrow {\cos ^2}x = 1 - \frac{1}{{16}} = \frac{{15}}{{16}}\)
Do \(\frac{\pi }{2} < x < \pi \Rightarrow \cos x < 0 \Rightarrow \cos x = - \sqrt {\frac{{15}}{{16}}} = - \frac{{\sqrt {15} }}{4}\)
\(\begin{array}{l} \Rightarrow \cot x = \frac{{\cos x}}{{\sin x}} = - \sqrt {15} .\\ \Rightarrow H = \cos \left( {5\pi - x} \right) + \tan \left( {x + \frac{{3\pi }}{2}} \right) = \cos \left( {\pi - x} \right) + \tan \left( {x - \frac{\pi }{2}} \right)\\ = - \cos x - \cot x = \frac{{\sqrt {15} }}{4} + \sqrt {15} = \frac{{5\sqrt {15} }}{4}.\end{array}\)
b) Chứng minh \(\frac{{\sin 2x}}{{\tan \left( {\frac{\pi }{4} - x} \right)\left( {1 + \sin 2x} \right)}} = \tan 2x\)
\(\begin{array}{l}\frac{{\sin 2x}}{{\tan \left( {\frac{\pi }{4} - x} \right)\left( {1 + \sin 2x} \right)}} = \frac{{\sin 2x}}{{\frac{{1 - \tan x}}{{1 + \tan x}}\left( {{{\sin }^2}x + {{\cos }^2}x + 2\sin x\cos x} \right)}}\\ = \frac{{\sin 2x}}{{\frac{{\cos x - \sin x}}{{\cos x + \sin x}}{{\left( {\cos x + \sin x} \right)}^2}}} = \frac{{\sin 2x}}{{{{\cos }^2}x - {{\sin }^2}x}} = \frac{{\sin 2x}}{{\cos 2x}} = \tan 2x.\end{array}\)
Chọn B.