(0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức \(P = \sqrt {1 - x} + \sqrt {1 + x} + 2\sqrt x \)
Giải chi tiết:
Điều kiện: \(\left\{ \begin{array}{l}1 - x \ge 0\\1 + x \ge 0\\x \ge 0\end{array} \right. \Leftrightarrow 0 \le x \le 1.\)
Với \(0 \le x \le 1,\) ta có: \(x\left( {1 - x} \right) \ge 0 \Leftrightarrow \sqrt {x\left( {1 - x} \right)} \ge 0 \Leftrightarrow 2\sqrt {x\left( {1 - x} \right)} \ge 0\)
\(\begin{array}{l} \Leftrightarrow x + 2\sqrt {x\left( {1 - x} \right)} + 1 - x \ge 1\\ \Leftrightarrow {\left( {\sqrt x + \sqrt {1 - x} } \right)^2} \ge 1\\ \Leftrightarrow \sqrt x + \sqrt {1 - x} \ge 1.\\ \Rightarrow P = \sqrt {1 - x} + \sqrt {1 + x} + 2\sqrt x = \sqrt x + \sqrt {1 - x} + \sqrt {1 + x} + \sqrt x \ge 1 + \sqrt {1 + x} + \sqrt x .\end{array}\)
Với \(x \ge 0 \Rightarrow \sqrt x + \sqrt {x + 1} \ge 1 \Rightarrow P \ge 1 + \sqrt x + \sqrt {x + 1} \ge 2.\)
Dấu “=” xảy ra \( \Leftrightarrow x = 0.\) Vậy \(Min\;P = 2\;\;khi\;\;x = 0.\)