Vi phân của hàm số $y=f\left( x \right)$được ký hiệu là $dy$và cho bởi $dy=df\left( x \right)={y}'dx={f}'\left( x \right)dx$
Bài tập: $d\left( \sin x+\cos x \right)={{\left( \sin x+\cos x \right)}^{\prime }}dx=\left( \cos x-\sin x \right)dx$
(1). $dx=\frac{1}{a}d\left( ax\pm b \right)=\frac{-1}{a}d\left( b\pm ax \right)$
(2). $xdx=\frac{1}{2}d\left( {{x}^{2}} \right)=\frac{1}{2a}d\left( a{{x}^{2}}\pm b \right)=-\frac{1}{2a}d\left( b\pm a{{x}^{2}} \right)$
(3). ${{x}^{2}}dx=\frac{1}{3}d\left( {{x}^{3}} \right)=\frac{1}{3a}d\left( a{{x}^{3}}\pm b \right)=\frac{-1}{3a}d\left( b\pm a{{x}^{3}} \right)$
(4). $\sin x=-d\left( \operatorname{cosx} \right)=\frac{-1}{a}d\left( a\cos x\pm b \right)$
(5). $\cos xdx=d\left( \operatorname{sinx} \right)=\frac{1}{a}d\left( a\sin x\pm b \right)$
(6). $\frac{dx}{{{\cos }^{2}}x}=d\left( \tan x \right)=\frac{1}{a}d\left( a\tan x\pm b \right)$
(7). $\frac{dx}{{{\sin }^{2}}x}=-d\left( \cot x \right)=\frac{-1}{a}d\left( a\cot x\pm b \right)$
(8). $\frac{dx}{2\sqrt{x}}=d\left( \sqrt{x} \right)=\frac{1}{a}d\left( a\sqrt{x}\pm b \right)=\frac{-1}{a}d\left( b\pm a\sqrt{x} \right)$
(9). ${{e}^{x}}dx=d\left( {{e}^{x}} \right)=\frac{1}{a}d\left( a{{e}^{x}}\pm b \right)=\frac{-1}{a}d\left( b\pm a{{e}^{x}} \right)$
(10). $\frac{dx}{x}=d\left( \ln x \right)=\frac{1}{a}d\left( a\ln x\pm b \right)=\frac{-1}{a}d\left( b\pm a\ln x \right)$
TOÁN LỚP 12