Ví dụ 1: Tính đạo hàm của hàm số $y={{2}^{2{{x}^{2}}+x+1}}$ A. $y'={{2}^{2{{x}^{2}}+x}}.$ B. $y'={{2}^{2{{x}^{2}}+x+1}}\ln 2.$ C. $y'=\left( 4x+1 \right){{.2}^{2{{x}^{2}}+x+1}}\ln 2.$ D. $y'=\left( 2x+1 \right){{.2}^{2{{x}^{2}}+x+1}}\ln 2.$ |
Lời giải chi tiết:
Ta có: $y={{2}^{2{{x}^{2}}+x+1}}\Rightarrow y'={{2}^{2{{x}^{2}}+x+1}}.\ln 2.{{\left( 2{{x}^{2}}+x+1 \right)}^{\prime }}=\left( 4x+1 \right){{.2}^{2{{x}^{2}}+x+1}}\ln 2.$ Chọn C.
Ví dụ 2: Tính đạo hàm của hàm số $y=x.{{e}^{{{x}^{2}}+x}}.$ A. $y'=\left( 2x+1 \right){{e}^{{{x}^{2}}+x}}.$ B. $y'=\left( 2{{x}^{2}}+x \right){{e}^{{{x}^{2}}+x}}.$ C. $y'=\left( 2{{x}^{2}}+x+1 \right){{e}^{{{x}^{2+x}}}}.$ D. $y'=\left( 2{{x}^{2}}+x+2 \right){{e}^{{{x}^{2}}+x}}.$ |
Lời giải chi tiết:
Ta có: $y'={{e}^{{{x}^{2}}+x}}+x{{\left( {{e}^{{{x}^{2}}+x}} \right)}^{\prime }}={{e}^{{{x}^{2}}+x}}+x.{{e}^{{{x}^{2}}+x}}.\left( 2x+1 \right)={{e}^{{{x}^{2}}+x}}\left( 2{{x}^{2}}+x+1 \right).$ Chọn C.
Ví dụ 3: Tính đạo hàm của hàm số $y=\frac{x+1}{{{4}^{x}}}$ A. $y'=\frac{1-2\left( x+1 \right)\ln 2}{{{2}^{2x}}}$ B. $y'=\frac{1+2\left( x+1 \right)\ln 2}{{{2}^{2x}}}$ C. $y'=\frac{1-2\left( x+1 \right)\ln 2}{{{2}^{{{x}^{2}}}}}$ D. $y'=\frac{1+2\left( x+1 \right)\ln 2}{{{2}^{{{x}^{2}}}}}$ |
Lời giải chi tiết:
Ta có $y'=\frac{{{4}^{x}}-\left( {{4}^{x}} \right)'.\left( x+1 \right)}{{{\left( {{4}^{x}} \right)}^{2}}}=\frac{{{4}^{x}}-{{4}^{x}}\ln 4.\left( x+1 \right)}{{{4}^{2x}}}=\frac{{{4}^{x}}\left[ 1-2\left( x+1 \right)\ln 2 \right]}{{{4}^{2x}}}=\frac{1-2\left( x+1 \right)\ln 2}{{{4}^{x}}}$
Hay $y'=\frac{1-2\left( x+1 \right)\ln 2}{{{2}^{2x}}}.$ Chọn A.
Ví dụ 4: Tính đạo hàm của hàm số $y={{\log }_{2}}\left( {{x}^{2}}+x+1 \right)$ A. $y'=\frac{2x+1}{{{x}^{2}}+x+1}.$ B. $y'=\frac{2x+1}{{{\log }_{2}}\left( {{x}^{2}}+x+2 \right).\ln 2}.$ C. $y'=\frac{\left( 2x+1 \right)\ln 2}{{{x}^{2}}+x+1}.$ D. $y'=\frac{2x+1}{\left( {{x}^{2}}+x+1 \right)\ln 2}.$ |
Lời giải chi tiết:
Ta có $y'=\frac{{{\left( {{x}^{2}}+x+1 \right)}^{\prime }}}{\left( {{x}^{2}}+x+1 \right)\ln 2}=\frac{2x+1}{\left( {{x}^{2}}+x+1 \right)\ln 2}.$ Chọn D.
Ví dụ 5: Tính đạo hàm của hàm số $y=\sqrt[4]{2a{{x}^{2}}+b{{x}^{4}}+1}$ A. $y'=\frac{ax+b{{x}^{3}}}{\sqrt[4]{{{\left( 2a{{x}^{2}}+b{{x}^{4}}+1 \right)}^{3}}}}.$ B. $y'=\frac{ax+b{{x}^{3}}}{\sqrt[4]{2a{{x}^{2}}+b{{x}^{4}}+1}}.$ C. $y'=\frac{4ax+4b{{x}^{3}}}{\sqrt[4]{{{\left( 2a{{x}^{2}}+b{{x}^{4}}+1 \right)}^{3}}}}.$ D. $y'=\frac{4ax+4b{{x}^{3}}}{\sqrt[4]{2a{{x}^{2}}+b{{x}^{4}}+1}}.$ |
Lời giải chi tiết:
Ta có $y=\sqrt[4]{2a{{x}^{2}}+b{{x}^{4}}+1}={{\left( 2a{{x}^{2}}+b{{x}^{4}}+1 \right)}^{\frac{1}{4}}}\Rightarrow y'=\frac{1}{4}{{\left( 2a{{x}^{2}}+b{{x}^{4}}+1 \right)}^{\frac{-3}{4}}}.\left( 4ax+4b{{x}^{3}} \right)$
$=\frac{ax+b{{x}^{3}}}{\sqrt[4]{{{\left( 2a{{x}^{2}}+b{{x}^{4}}+1 \right)}^{3}}}}.$ Chọn A.
Ví dụ 6: Cho hàm số $f\left( x \right)={{\log }_{2}}\left( {{x}^{2}}-x \right).$ Tính $f'\left( 2 \right)$ A. $f'\left( 2 \right)=\frac{3}{2}.$ B. $f'\left( 2 \right)=\frac{3}{2}{{\log }_{2}}e.$ C.$f'\left( 2 \right)=\frac{3\ln 2}{2}.$ D. $f'\left( 2 \right)=\frac{2}{3\ln 2}.$ |
Lời giải chi tiết:
Ta có $f'\left( x \right)=\frac{2x-1}{\left( {{x}^{2}}-x \right)\ln 2}\Rightarrow f'\left( 2 \right)=\frac{3}{2\ln 2}=\frac{3}{2}{{\log }_{2}}e.$ Chọn B.
Ví dụ 7: Giá trị của tham số $m$ để $y'\left( e \right)=2m+1$ với $y=\ln \left( 2x+1 \right)$ là: A. $\frac{1+2e}{4e-2}.$ B. $\frac{1+2e}{4e+2}.$ C. $\frac{1-2e}{4e+2}.$ D. $\frac{1-2e}{4e-2}.$ |
Lời giải chi tiết:
Ta có $y'=\frac{2}{2x+1}\Rightarrow y'\left( e \right)=\frac{2}{2e+1}=2m+1\Leftrightarrow \frac{2}{2e+1}-1=2m\Leftrightarrow \frac{1-2e}{2e+1}=2m\Leftrightarrow m=\frac{1-2e}{2+4e}.$
Chọn C.
Ví dụ 8: Cho hàm số $f\left( x \right)=\ln \left( 2{{e}^{x}}+m \right)$ thỏa mãn $f'\left( -\ln 2 \right)=\frac{3}{2}.$ Mệnh đề nào sau đây là đúng? A. $m\in \left( 1;3 \right).$ B. $m\in \left( -5;-2 \right).$ C. $m\in \left( 1;+\infty \right).$ D. $m\in \left( -1;0 \right).$ |
Lời giải chi tiết:
Ta có: $f'\left( x \right)=\frac{2{{e}^{x}}}{2{{e}^{x}}+m},$ lại có ${{e}^{-\ln 2}}={{2}^{-\ln e}}=\frac{1}{2}$
Do đó $f'\left( -\ln 2 \right)=\frac{3}{2}\Leftrightarrow \frac{1}{1+m}=\frac{3}{2}\Leftrightarrow m=-\frac{1}{3}.$ Chọn D.
Ví dụ 9: Cho hàm số $y={{\log }_{3}}\left( {{3}^{x}}+x \right),$ biết $y'\left( 1 \right)=\frac{a}{4}+\frac{1}{b\ln 3}$ với $a,b\in \mathbb{Z}.$ Giá trị của $a+b$ là: A. $a+b=2.$ B. $a+b=7.$ C. $a+b=4.$ D. $a+b=5.$ |
Lời giải chi tiết:
Ta có: $y'=\frac{{{\left( {{3}^{x}}+x \right)}^{\prime }}}{\left( {{3}^{x}}+x \right)\ln 3}=\frac{{{3}^{x}}\ln 3+1}{\left( {{3}^{x}}+x \right)\ln 3}$
Suy ra $y'\left( 1 \right)=\frac{3\ln 3+1}{4\ln 3}=\frac{3}{4}+\frac{1}{4\ln 3}\Rightarrow \left\{ \begin{align} & a=3 \\ & b=4 \\ \end{align} \right.\Rightarrow a+b=7.$ Chọn B.
Ví dụ 10: Cho hàm số $f\left( x \right)=\frac{\ln \left( {{x}^{2}}+1 \right)}{x}.$ Biết rằng $f'\left( 1 \right)=a\ln 2+b$ với $a,b\in \mathbb{Z}.$ Tính $a-b.$ A. $a-b=1.$ B. $a-b=-1.$ C. $a-b=2.$ D. $a-b=-2.$ |
Lời giải chi tiết:
Ta có: $f'\left( x \right)=\frac{{{\left[ \ln \left( {{x}^{2}}+1 \right) \right]}^{\prime }}.x-\ln \left( {{x}^{2}}+1 \right)}{{{x}^{2}}}=\frac{\frac{2{{x}^{2}}}{{{x}^{2}}+1}-\ln \left( {{x}^{2}}+1 \right)}{{{x}^{2}}}$
Do đó $f'\left( 1 \right)=1-\ln 2\Rightarrow \left\{ \begin{align} & a=-1 \\ & b=1 \\ \end{align} \right.\Rightarrow a-b=-2.$ Chọn D.
Ví dụ 11: Cho hàm số $y=\frac{\ln x}{x},$ mệnh đề nào dưới đây đúng? A. $2y'+xy''=-\frac{1}{{{x}^{2}}}.$ B. $y'+xy''=\frac{1}{{{x}^{2}}}.$ C. $y'+xy''=-\frac{1}{{{x}^{2}}}.$ D. $2y'+xy''=\frac{1}{{{x}^{2}}}.$ |
Lời giải chi tiết:
Ta có: $xy=\ln x\Rightarrow \left( xy \right)'=\left( \ln x \right)'\Rightarrow x'y+y'x=\frac{1}{x}\Leftrightarrow y+xy'=\frac{1}{x}$
Tiếp tục đạo hàm 2 vế ta có: $y'+y'+xy''=-\frac{1}{{{x}^{2}}}\Leftrightarrow 2y'+xy''=-\frac{1}{{{x}^{2}}}.$ Chọn A.
Ví dụ 12: Tính đạo hàm của hàm số $y={{\log }_{2}}\left( \sqrt[3]{3x+1} \right)$ trên tập xác định của nó A. $\frac{1}{\left( 3x+1 \right)\ln 2}.$ B. $\frac{1}{\sqrt[3]{3x+1}\ln 2}.$ C. $\frac{\ln 2}{3x+1}.$ D. $\frac{1}{3\left( 3x+1 \right)\ln 2}.$ |
Lời giải chi tiết:
Ta có: $y={{\log }_{2}}\left( \sqrt[3]{3x+1} \right)=\frac{1}{3}{{\log }_{2}}\left( 3x+1 \right)\Rightarrow y'=\frac{1}{3}.\frac{3}{\left( 3x+1 \right)\ln 2}=\frac{1}{\left( 3x+1 \right)\ln 2}.$ Chọn A.
Ví dụ 13: Đạo hàm của hàm số $y=\sqrt[7]{\cos x}$ là: A. $\frac{-\sin x}{7.\sqrt[7]{{{\cos }^{8}}x}}.$ B. $\frac{\sin x}{7.\sqrt[7]{{{\cos }^{6}}x}}.$ C. $\frac{1}{7.\sqrt[7]{{{\cos }^{6}}x}}.$ D. $\frac{-\sin x}{7.\sqrt[7]{{{\cos }^{6}}x}}.$ |
Lời giải chi tiết:
Ta có $y=\sqrt[7]{\cos x}={{\left( \cos x \right)}^{\frac{1}{7}}}\Rightarrow y'=\frac{1}{7}{{\left( \cos x \right)}^{\frac{-6}{7}}}.\left( \cos x \right)'=\frac{-\sin x}{7.\sqrt[7]{{{\cos }^{6}}x}}.$ Chọn D.
Ví dụ 14: Tính đạo hàm của hàm số $y=\ln \frac{{{x}^{2}}+1}{{{x}^{2}}-1}$ A. $y'=\frac{4x}{{{x}^{4}}-1}.$ B. $y'=\frac{-4x}{{{x}^{4}}-1}.$ C. $y'=\frac{-4{{x}^{3}}}{{{x}^{4}}-1}.$ D. \[y'=\frac{4{{x}^{3}}}{{{x}^{4}}-1}.\] |
Lời giải chi tiết:
Ta có $y=\ln \frac{{{x}^{2}}+1}{{{x}^{2}}-1}=\ln \left( {{x}^{2}}+1 \right)-\ln \left( {{x}^{2}}-1 \right)\Rightarrow y'=\frac{2x}{{{x}^{2}}+1}-\frac{2x}{{{x}^{2}}-1}=\frac{2x\left( {{x}^{2}}-1-{{x}^{2}}-1 \right)}{\left( {{x}^{2}}+1 \right)\left( {{x}^{2}}-1 \right)}=\frac{-4x}{{{x}^{4}}-1}.$
Chọn B.
Ví dụ 15: Đạo hàm của hàm số $f\left( x \right)={{3}^{x}}.{{\log }_{3}}x$ là: A. $f'\left( x \right)={{3}^{x}}\left( \ln x+\frac{1}{x\ln 3} \right).$ B. $f'\left( x \right)={{3}^{x}}\left( \ln x+\frac{1}{\ln 3} \right).$ C. $f'\left( x \right)={{3}^{x}}\left( \ln x+\frac{\ln 3}{x} \right).$ D. $f'\left( x \right)={{3}^{x}}\left( {{\log }_{3}}x+\frac{1}{x\ln 3} \right).$ |
Lời giải chi tiết:
Ta có: $f'\left( x \right)={{3}^{x}}\ln 3.lo{{g}_{3}}x+\frac{{{3}^{x}}}{x\ln 3}={{3}^{x}}\left( \ln x+\frac{1}{x\ln 3} \right).$ Chọn A.
Ví dụ 16: Đạo hàm của hàm số $y={{\log }_{\sqrt{3}}}\left| {{x}^{2}}-1 \right|$ là: A. $y'=\frac{2x}{\left( {{x}^{2}}-1 \right)\ln 3}.$ B. $y'=\frac{4x}{\left| {{x}^{2}}-1 \right|\ln 3}.$ C. $y'=\frac{4x}{\left( {{x}^{2}}-1 \right)\ln 3}.$ D. $y'=\frac{2x}{\left| {{x}^{2}}-1 \right|\ln \sqrt{3}}.$ |
Lời giải chi tiết:
Ta có: $y'=\frac{2x}{\left( {{x}^{2}}-1 \right)\ln \sqrt{3}}=\frac{2x}{\left( {{x}^{2}}-1 \right).\frac{1}{2}\ln 3}=\frac{4x}{\left( {{x}^{2}}-1 \right)\ln 3}.$ Chọn C.
Ví dụ 17: Cho hàm số $f\left( x \right)=\ln \left( {{x}^{2}}-2x \right).$ Tính đạo hàm của hàm số \[y=\frac{1}{{{f}^{2}}\left( x \right)}\] A. $y'=\frac{2x-2}{{{\left( {{x}^{2}}-2x \right)}^{2}}}.$ B. $y'=\frac{4-4x}{\left( {{x}^{2}}-2x \right){{\ln }^{3}}\left( {{x}^{2}}-2x \right)}.$ C. $y'=\frac{x-1}{2\left( {{x}^{2}}-2x \right)}.$ D. $y'=\frac{-4x+4}{\left( {{x}^{2}}-2x \right){{\ln }^{4}}\left( {{x}^{2}}-2x \right)}.$ |
Lời giải chi tiết:
Ta có: $y=\frac{1}{{{f}^{2}}\left( x \right)}\Rightarrow y'=\frac{-{{\left[ {{f}^{2}}\left( x \right) \right]}^{\prime }}}{{{f}^{4}}\left( x \right)}=-\frac{2f\left( x \right).f'\left( x \right)}{{{f}^{4}}\left( x \right)}=-\frac{2f'\left( x \right)}{{{f}^{3}}\left( x \right)}$
Trong đó $f'\left( x \right)=\frac{2x-2}{{{x}^{2}}-2x}\Rightarrow y'=\frac{4-4x}{\left( {{x}^{2}}-2x \right).{{\ln }^{3}}\left( {{x}^{2}}-2x \right)}.$ Chọn B.
TOÁN LỚP 12