Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
Nhận biết (25%)
Thông hiểu (9.4%)
Vận dụng (43.8%)
Vận dụng cao (21.9%)
Lựa chọn loại câu hỏi bạn muốn làm Làm tất cả Làm bài dễ Làm bài khó
Danh sách câu hỏi
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Miền nghiệm của bất phương trình \( - x + 2 + 2\left( {y - 2} \right) < 2\left( {1 - x} \right)\) không chứa điểm:
Cho bất phương trình\( - 2x + \sqrt 3 y + \sqrt 2 \le 0\) có tập nghiệm là \(S\). Khẳng định nào sau đây là khẳng định đúng?
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình$\left\{ {\begin{array}{*{20}{c}}{2x + 3y - 1 > 0}\\{5x - y + 4 < 0}\end{array}} \right.$?
Miền nghiệm của bất phương trình \(3x - 2y > - 6\) là
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - \dfrac{3}{2}y \ge 1\\4x - 3y \le 2\end{array} \right.\) có tập nghiệm \(S\). Khẳng định nào sau đây là khẳng định đúng?
Cho hệ \(\left\{ \begin{array}{l}2x + 3y < 5\,\,\,(1)\\x + \dfrac{3}{2}y < 5\,\,\,(2)\end{array} \right.\). Gọi \({S_1}\) là tập nghiệm của bất phương trình (1), \({S_2}\) là tập nghiệm của bất phương trình (2) và \(S\) là tập nghiệm của hệ thì
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D ?
Miền tam giác \(ABC\) kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn bệ A, B, C, D ?
Giá trị nhỏ nhất của biết thức $F = y - x$ trên miền xác định bởi hệ $\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.$ là.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y \le 2\\3x + 5y \le 15\\x \ge 0\\y \ge 0\end{array} \right.\). Khẳng định nào sau đây là khẳng định sai ?
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa $24$ $g$ hương liệu, $9$ lít nước và $210$ $g$ đường để pha chế nước cam và nước táo.
+ Để pha chế $1$ lít nước cam cần $30$ $g$ đường, $1$ lít nước và $1$ $g$ hương liệu;
+ Để pha chế $1$ lít nước táo cần $10$ $g$ đường, $1$ lít nước và $4$ $g$ hương liệu.
Mỗi lít nước cam nhận được $60$ điểm thưởng, mỗi lít nước táo nhận được $80$ điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin \(A\) và \(B\) đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả \(A\) lẫn \(B\) và có thể tiếp nhận không quá 600 đơn vị vitamin \(A\)và không quá 500 đơn vị vitamin \(B\). Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin \(B\) không ít hơn một nửa số đơn vị vitamin \(A\) và không nhiều hơn ba lần số đơn vị vitamin \(A\). Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin \(A\) có giá 9 đồng và mỗi đơn vị vitamin \(B\) có giá 7,5 đồng.
Miền nghiệm của bất phương trình: $3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3$ là nửa mặt phẳng chứa điểm:
Miền nghiệm của bất phương trình: $3\left( {x - 1} \right) + 4\left( {{\rm{ }}y - 2} \right) < 5x - 3$ là nửa mặt phẳng chứa điểm:
Điểm \(A\left( { - 1;3} \right)\) là điểm thuộc miền nghiệm của bất phương trình:
Cặp số $\left( {2;3} \right)$ là nghiệm của bất phương trình nào sau đây ?
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x + 3y - 2 \ge 0\\2x + y + 1 \le 0\end{array} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}\dfrac{x}{2} + \dfrac{y}{3} - 1 \ge 0\\x \ge 0\\x + \dfrac{1}{2} - \dfrac{{3y}}{2} \le 2\end{array} \right.\) chứa điểm nào trong các điểm sau đây?
Miền nghiệm của bất phương trình \(x + y \le 2\) là phần tô đậm trong hình vẽ của hình vẽ nào, trong các hình vẽ sau?
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y > - 2\\y - x < 3\end{array} \right.\) là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + y - 1 > 0\\y \ge 2\\ - x + 2y > 3\end{array} \right.\) là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?
Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Biểu thức $F\left( {x;y} \right) = y-x$ đạt giá trị nhỏ nhất với điều kiện $\left\{ {\begin{array}{*{20}{c}}{2x - y \ge 2}\\{x - 2y \le 2}\\{x + y \le 5}\\{x \ge 0}\end{array}} \right.$ tại điểm $M$ có toạ độ là:
Giá trị nhỏ nhất \({F_{\min }}\) của biểu thức $F\left( {x;y} \right) = 4x + 3y$ trên miền xác định bởi hệ $\,\left\{ \begin{array}{l}0 \le \,\,x\,\, \le \,\,10\\0\,\, \le \,\,y\,\, \le \,\,9\\2x\,\, + \,\,y\,\, \ge \,\,14\\2x\,\, + \,\,5y\,\, \ge \,\,30\end{array} \right.$ là
Cho $x,y$ thoả mãn hệ $\left\{ \begin{array}{l}x + 2y - 100 \le 0\\2x\,\, + \,y - 80\,\, \le 0\\x \ge 0\\y \ge 0\end{array} \right..$ Tìm giá trị lớn nhất \({P_{\max }}\) của biểu thức $P = \left( {x;y} \right) = 40000x + 30000y.$
Giá trị lớn nhất \({F_{\max }}\) của biểu thức $F\left( {x;y} \right) = x + 2y$ trên miền xác định bởi hệ \(\left\{ \begin{array}{l}0 \le y \le 4\\x \ge 0\\x - y - 1 \le 0\\x + 2y - 10 \le 0\end{array} \right.\) là
Một xưởng sản xuất hai loại sản phẩm
Xưởng có 200 kg nguyên liệu và 1200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm bao nhiêu để có mức lời cao nhất?
Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm \(A\) và sản phẩm \(B\) trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm \(A\) lãi \(4\) triệu đồng người ta sử dụng máy \(I\) trong \(1\) giờ, máy \(II\) trong \(2\) giờ và máy \(III\) trong \(3\) giờ. Để sản xuất ra một tấn sản phẩm \(B\) lãi được \(3\) triệu đồng người ta sử dụng máy \(I\) trong \(6\) giờ, máy \(II\) trong \(3\) giờ và máy \(III\) trong \(2\) giờ. Biết rằng máy \(I\) chỉ hoạt động không quá \(36\) giờ, máy hai hoạt động không quá \(23\) giờ và máy \(III\) hoạt động không quá \(27\) giờ. Hãy lập kế hoạch sản xuất cho nhà máy để tiền lãi được nhiều nhất.
báo lỗi
Hãy viết chi tiết giúp Tự Học 365
Gửi Hủy bỏ
Note
Lưu note Hủy bỏ