Cho hypebol \((H):3{x^2} - 12{y^2} = 12\), có hai tiêu điểm \({F_1},\,{F_2}\). Tìm điểm M thuộc (H) sao cho \(M{F_1} = 2\).
Giải chi tiết:
\((H):3{x^2} - 12{y^2} = 12 \Leftrightarrow \frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1 \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 1\\c = \sqrt 5 \end{array} \right.\)
\(M\left( {{x_0};{y_0}} \right) \in \left( H \right) \Rightarrow M{F_1} = \left| {a + \frac{c}{a}{x_0}} \right| = \left| {2 + \frac{{\sqrt 5 }}{2}{x_0}} \right| = 2 \Rightarrow \left[ \begin{array}{l}2 + \frac{{\sqrt 5 }}{2}{x_0} = 2\\2 + \frac{{\sqrt 5 }}{2}{x_0} = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = - \frac{8}{{\sqrt 5 }}\end{array} \right.\)
+) \({x_0} = 0 \Rightarrow {y_0}^2 = - 1\) (vô lí)
+) \({x_0} = - \frac{8}{{\sqrt 5 }} \Rightarrow {y_0}^2 = \frac{{11}}{5} \Leftrightarrow {y_0} = \pm \sqrt {\frac{{11}}{5}} \Rightarrow {M_1}\left( { - \frac{8}{{\sqrt 5 }};\sqrt {\frac{{11}}{5}} } \right),\,{M_2}\left( { - \frac{8}{{\sqrt 5 }}; - \sqrt {\frac{{11}}{5}} } \right)\,\).
Chọn: D