[LỜI GIẢI] Đẳng thức nào sau đây sai? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Đẳng thức nào sau đây sai?

Đẳng thức nào sau đây sai?

Câu hỏi

Nhận biết

Đẳng thức nào sau đây sai?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

+) Phương án A: \({\sin ^2}x + {\tan ^2}x = {1 \over {{{\cos }^2}x}} - {\cos ^2}x\)

\(VT = {\sin ^2}x + {\tan ^2}x = 1 - {\cos ^2}x + {1 \over {{{\cos }^2}x}} - 1 = {1 \over {{{\cos }^2}x}} - {\cos ^2}x = VP\).

+) Phương án B: \({{\tan 3x} \over {\tan \,x}} = {{3 - {{\tan }^2}x} \over {1 + 3{{\tan }^2}x}}\)

\(VT = {{\tan 3x} \over {\tan \,x}} = {{{{3\tan x - {{\tan }^3}x} \over {1 - 3{{\tan }^3}x}}} \over {\tan \,x}} = {{3 - {{\tan }^2}x} \over {1 - 3{{\tan }^2}x}} \ne VP\)

+) Phương án C: \({{{{\tan }^2}a - {{\tan }^2}b} \over {1 - {{\tan }^2}a{{\tan }^2}b}} = \tan (a + b)\tan (a - b)\)

\(VT = {{{{\tan }^2}a - {{\tan }^2}b} \over {1 - {{\tan }^2}a{{\tan }^2}b}} = {{\left( {\tan \,a + \tan b} \right)\left( {\tan \,a - \tan b} \right)} \over {\left( {1 - \tan \,a\,\tan b} \right)\left( {1 + \tan \,a\,\tan b} \right)}} = {{\tan \,a + \tan b} \over {1 - \tan \,a\,\tan b}}.{{\tan \,a - \tan b} \over {1 + \tan \,a\,\tan b}} = \tan (a + b)\tan (a - b) = VP\)

+) Phương án D: \({{\sin 2x - 2\sin x} \over {\sin 2x + 2\sin x}} + {\tan ^2}{x \over 2} = 0\)

\(\eqalign{  & VT = {{\sin 2x - 2\sin x} \over {\sin 2x + 2\sin x}} + {\tan ^2}{x \over 2} = {{2\sin x\cos x - 2\sin x} \over {2\sin x\cos x + 2\sin x}} + {{1 - \cos x} \over {1 + \cos x}}  \cr   &  = {{2\sin x(\cos x - 1)} \over {2\sin x(1 + \cos x)}} + {{1 - \cos x} \over {1 + \cos x}} = {{\cos x - 1} \over {1 + \cos x}} + {{1 - \cos x} \over {1 + \cos x}} = 0 = VP \cr} \)

Chọn: B

Ý kiến của bạn