[LỜI GIẢI] Phương trình chính tắc của elip có một đỉnh là A(0; - 4) tâm sai e = 3 5. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Phương trình chính tắc của elip có một đỉnh là A(0; - 4) tâm sai e = 3 5.

Phương trình chính tắc của elip có một đỉnh là A(0; - 4) tâm sai e = 3 5.

Câu hỏi

Nhận biết

Phương trình chính tắc của elip có một đỉnh là \(A(0; - 4)\), tâm sai \(e = {3 \over 5}\).


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Elip có một đỉnh là \(A(0; - 4)\) suy ra \(b = 4\).

Tâm sai  \(e = {3 \over 5}\) suy ra ta có \({c \over a} = {3 \over 5}\). Vì \(a,c > 0\) nên ta có  \({{{c^2}} \over {{a^2}}} = {9 \over {25}} \Leftrightarrow 25{c^2} - 9{a^2} = 0\)

Mặt khác ta có \({a^2} - {c^2} = {b^2} = 16\).

Ta có hệ phương trình \(\left\{ \matrix{  9{a^2} - 25{c^2} = 0 \hfill \cr   {a^2} - {c^2} = 16 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {a^2} = 25 \hfill \cr   {c^2} = 9 \hfill \cr}  \right.\).

Vậy phương trình của elip là: \({{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1\)

Đáp án: C

Ý kiến của bạn