[LỜI GIẢI] Cho abc > 0;a + b + c = 3. Giá trị lớn nhất của biểu thức S = căn 3a + b  + căn 3b + c  + căn - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho abc > 0;a + b + c = 3. Giá trị lớn nhất của biểu thức S = căn 3a + b  + căn 3b + c  + căn

Cho abc > 0;a + b + c = 3. Giá trị lớn nhất của biểu thức S = căn 3a + b  + căn 3b + c  + căn

Câu hỏi

Nhận biết

Cho \(a,\,b,\,c > 0;\,a + b + c = 3\). Giá trị lớn nhất của biểu thức \(S = \sqrt {3a + b} + \sqrt {3b + c} + \sqrt {3c + a} \) là:


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

\(\sqrt {3a + b}  = {1 \over 2}.\sqrt {\left( {3a + b} \right).4}  \le {1 \over 2}.{{\left( {3a + b} \right) + 4} \over 2} = {1 \over 4}.(3a + b + 4)\)

Tương tự:  \(\sqrt {3b + c}  \le {1 \over 4}.(3b + c + 4)\) và \(\sqrt {3c + a}  \le {1 \over 4}.(3c + a + 4)\)

\( \Rightarrow S = \sqrt {3a + b}  + \sqrt {3b + c}  + \sqrt {3c + a}  \le {1 \over 4}\left[ {4\left( {a + b + c} \right) + 12} \right]\)

Vì a + b + c = 3 nên ta có \(S \le 6\)

\(\,Max\,S = 6 \Leftrightarrow \left\{ \matrix{  3a + b = 4  \cr   3b + c = 4 \hfill \cr   3c + a = 4  \cr   a + b + c = 3  \cr}  \right. \Leftrightarrow a = b = c = 1\)

Chọn C.

Ý kiến của bạn