[LỜI GIẢI] Tổng các nghiệm của phương trình 4 x^2 - 12 x - 5 căn 4 x^2 - 12 x + 11  + 15 = 0  bằng: - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tổng các nghiệm của phương trình 4 x^2 - 12 x - 5 căn 4 x^2 - 12 x + 11  + 15 = 0  bằng:

Tổng các nghiệm của phương trình 4 x^2 - 12 x - 5 căn 4 x^2 - 12 x + 11  + 15 = 0  bằng:

Câu hỏi

Nhận biết

Tổng các nghiệm của phương trình \( 4{{\rm{x}}^2} - 12{\rm{x}} - 5\sqrt {4{{\rm{x}}^2} - 12{\rm{x}} + 11} + 15 = 0\) bằng:


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Vì : \(4{{\rm{x}}^2} - 12{\rm{x}} + 11 = 4{\left( {x - \dfrac{3}{2}} \right)^2} + 2 > 0,\forall x\) nên phương trình xác định với mọi x

Đặt: \(\sqrt {4{{\rm{x}}^2} - 12{\rm{x}} + 11} = t(t \ge \sqrt 2 )\)

\(\begin{array}{l} \Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 11 = {t^2}\\ \Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 15 = {t^2} + 4\end{array}\)

Khi đó, phương trình trở thành: \({t^2} - 5t + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\left( {ktm} \right)\\t = 4\,\,\,\,\,\left( {tm} \right)\end{array} \right.\)

+) Với t = 4 \( \Leftrightarrow 4{x^2} - 12x + 11 = 16 \Leftrightarrow 4{x^2} - 12x - 5 = 0\)

 Tổng 2 nghiệm của phương trình là 3.

Chọn B.

Ý kiến của bạn