Tổng hai nghiệm của phương trình \(5\sqrt x + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4\) là:
Giải chi tiết:
Điều kiện: \(x > 0\)
Ta có: \(5\sqrt x + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4 \Leftrightarrow 5\left( {\sqrt x + \dfrac{1}{{2\sqrt x }}} \right) = 2\left( {{\rm{x}} + \dfrac{1}{{{\rm{4x}}}}} \right) + 4\)
Đặt \(\sqrt x + \dfrac{1}{{2\sqrt x }} = t\,\,\,\left( {t > 0} \right) \Leftrightarrow {t^2} = x + \dfrac{1}{{4x}} + 1 \Leftrightarrow x + \dfrac{1}{{4x}} = {t^2} - 1\)
Khi đó phương trình trở thành: \(5t = 2\left( {{t^2} - 1} \right) + 4 \Leftrightarrow 2{t^2} - 5t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\left( {tm} \right)\\t = \dfrac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.\)
+) Với \(t = \dfrac{1}{2} \Leftrightarrow x + \dfrac{1}{{4{\rm{x}}}} = - \dfrac{3}{4} \Leftrightarrow 4{{\rm{x}}^2}{\rm{ + 3x}} + 1 = 0\) (vô nghiệm)
+) Với t = 2\( \Leftrightarrow x + \dfrac{1}{{4{\rm{x}}}} = 3 \Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 1 = 0\)
Tổng 2 nghiệm của phương trình là: 3
Chọn B.