[LỜI GIẢI] Cho phương trìnhx+2 căn 7-x=2 căn x-1+ căn -x^2+8textx-7+1. Hiệu bình phương các nghiệm của phương t - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho phương trìnhx+2 căn 7-x=2 căn x-1+ căn -x^2+8textx-7+1. Hiệu bình phương các nghiệm của phương t

Cho phương trìnhx+2 căn 7-x=2 căn x-1+ căn -x^2+8textx-7+1. Hiệu bình phương các nghiệm của phương t

Câu hỏi

Nhận biết

Cho phương trình\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-{{x}^{2}}+8\text{x}-7}+1\). Hiệu bình phương các nghiệm của phương trình là:


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Điều kiện: 

\(\left\{ \begin{array}{l}x - 1 \ge 0\\7 - x \ge 0\\ - {x^2} + 8x - 7 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\x \le 7\\1 \le x \le 7\end{array} \right. \Leftrightarrow 1 \le x \le 7\)

Phương trình: 

\(\begin{array}{l}x + 2\sqrt {7 - x} = 2\sqrt {x - 1} + \sqrt { - {x^2} + 8{\rm{x}} - 7} + 1\\ \Leftrightarrow x - 1 + 2\sqrt {7 - x} - 2\sqrt {x - 1} - \sqrt {(7 - x)(x - 1)} = 0\\ \Leftrightarrow \sqrt {x - 1} \left( {\sqrt {x - 1} - 2} \right) - \sqrt {7 - x} \left( {\sqrt {x - 1} - 2} \right) = 0\\ \Leftrightarrow \left( {\sqrt {x - 1} - 2} \right)\left( {\sqrt {x - 1} - \sqrt {7 - x} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 1} = 2\\\sqrt {x - 1} = \sqrt {7 - x} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x - 1 = 4\\x - 1 = 7 - x\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\,\,\,\left( {tm} \right)\\x = 4\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

\(\Rightarrow\) Hiệu bình phương các nghiệm của phương trình là: \({{5}^{2}}-{{4}^{2}}={{3}^{2}}=9\)

Chọn D.

Ý kiến của bạn