[LỜI GIẢI] Chứng minh rằng nếu xyz = 1 thì 11 + x + xy + 11 + y + yz + 11 + z + z - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Chứng minh rằng nếu xyz = 1 thì 11 + x + xy + 11 + y + yz + 11 + z + z

Chứng minh rằng nếu xyz = 1 thì 11 + x + xy + 11 + y + yz + 11 + z + z

Câu hỏi

Nhận biết

Chứng minh rằng nếu \(xyz = 1\) thì \(\frac{1}{{1 + x + xy}} + \frac{1}{{1 + y + yz}} + \frac{1}{{1 + z + zx}} = 1\).


Đáp án đúng:

Lời giải của Tự Học 365

Giải chi tiết:

\(\begin{array}{l}\frac{1}{{1 + x + xy}} + \frac{1}{{1 + y + yz}} = \frac{1}{{xyz + x + xy}} + \frac{1}{{1 + y + yz}} = \frac{{xyz}}{{x\left( {yz + 1 + y} \right)}} + \frac{1}{{1 + y + yz}} = \frac{{yz + 1}}{{1 + y + yz}}\\\frac{1}{{1 + z + zx}} = \frac{{xyz}}{{xzy + z.\left( {xyz} \right) + zx}} = \frac{{xyz}}{{xz\left( {y + yz + 1} \right)}} = \frac{y}{{y + yz + 1}}\end{array}\)

Suy ra :\(\frac{1}{{1 + x + xy}} + \frac{1}{{1 + y + yz}} + \frac{1}{{1 + z + zx}} = \frac{{yz + 1}}{{1 + y + yz}} + \frac{y}{{y + yz + 1}} = \frac{{1 + y + yz}}{{1 + y + yz}} = 1\) (đpcm)

Ý kiến của bạn