[LỜI GIẢI] Cho parabol ( P ):y = x^2 + 2x - 3 a) Xác định trục đối xứng và tọa đ - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho parabol ( P ):y = x^2 + 2x - 3 a) Xác định trục đối xứng và tọa đ

Cho parabol ( P ):y = x^2 + 2x - 3
a) Xác định trục đối xứng và tọa đ

Câu hỏi

Nhận biết

Cho parabol \(\left( P \right):\,\,y = {x^2} + 2x - 3\)

a) Xác định trục đối xứng và tọa độ đỉnh của parabol \(\left( P \right)\). Vẽ parabol \(\left( P \right)\).

b) Xác định khoảng đồng biến, khoảng nghịch biến và lập bảng biến thiên của hàm số \(y = {x^2} + 2x - 3\).


Đáp án đúng:

Lời giải của Tự Học 365

Giải chi tiết:

 

a) Xác định trục đối xứng và tọa độ đỉnh của parabol \(\left( P \right)\). Vẽ parabol \(\left( P \right)\).

Parabol \(\left( P \right):\,\,y = {x^2} + 2x - 3\) nhận \(x =  - 1\) làm trục đối xứng và có đỉnh \(I\left( { - 1; - 4} \right)\)

Một số điểm trên (P):

 

 

Đồ thị hàm số (hình bên):

 

 

b) Xác định khoảng đồng biến, khoảng nghịch biến và lập bảng biến thiên của hàm số \(y = {x^2} + 2x - 3\).

Hàm số\(y = {x^2} + 2x - 3\) có \(1 > 0\), đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\).

Bảng biến thiên của hàm số \(y = {x^2} + 2x - 3\)

Ý kiến của bạn