[LỜI GIẢI] Biết sin x + cos x = căn 2 2. Trong các kết quả sau, kết quả nào sai? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Biết sin x + cos x = căn 2 2. Trong các kết quả sau, kết quả nào sai?

Biết sin x + cos x = căn  2 2. Trong các kết quả sau, kết quả nào sai?

Câu hỏi

Nhận biết

Biết \( \sin x + \cos x = \dfrac{{ \sqrt 2 }}{2} \). Trong các kết quả sau, kết quả nào sai?


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

\(\begin{array}{l}\sin x + \cos x = \dfrac{{\sqrt 2 }}{2} \Rightarrow {\left( {\sin x + \cos x} \right)^2} = \dfrac{1}{2}\\ \Leftrightarrow {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x = \dfrac{1}{2}\\ \Leftrightarrow 1 + 2\sin x\cos x = \dfrac{1}{2} \Leftrightarrow \sin x\cos x =  - \dfrac{1}{4}\end{array}\)

Ta có: \({\left( {\sin x - \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x\)

\( = 1 - 2.\left( { - \dfrac{1}{4}} \right) = \dfrac{3}{2} \Rightarrow \sin x - \cos x =  \pm \dfrac{{\sqrt 6 }}{2}\).

\( \Rightarrow {\sin ^4}x + {\cos ^4}x = \left( {{{\sin }^2}x + {{\cos }^2}x} \right) - 2{\sin ^2}x{\cos ^2}x = 1 - 2.{\left( { - \dfrac{1}{4}} \right)^2} = \dfrac{7}{8}\).

\( \Rightarrow {\tan ^2}x + {\cot ^2}x = \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^2}x{{\cos }^2}x}} = \dfrac{{\dfrac{7}{8}}}{{{{\left( { - \dfrac{1}{4}} \right)}^2}}} = 14\).

Vậy khẳng định D sai.

Chọn D

Ý kiến của bạn