[LỜI GIẢI] Cho biểu thức P = ( x - 6x + 3căn x - 1căn x + 1căn x  + 3 ):2căn - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho biểu thức P = ( x - 6x + 3căn x - 1căn x + 1căn x  + 3 ):2căn

Cho biểu thức P = ( x - 6x + 3căn  x  - 1căn  x  + 1căn  x  + 3 ):2căn

Câu hỏi

Nhận biết

Cho biểu thức \(P = \left( { \frac{{x - 6}}{{x + 3 \sqrt x }} - \frac{1}{{ \sqrt x }} + \frac{1}{{ \sqrt x + 3}}} \right): \frac{{2 \sqrt x - 6}}{{x + 1}} \) với \(x > 0, \; \;x \ne 9. \)

a) Rút gọn biểu thức P.

b) Tìm giá trị của x để \(P = 1. \)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

a) Rút gọn biểu thức P.

Điều kiện: \(x > 0,\;x \ne 9.\)

\(\begin{array}{l}P = \left( {\frac{{x - 6}}{{x + 3\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x  + 3}}} \right):\frac{{2\sqrt x  - 6}}{{x + 1}}\\\;\;\; = \left( {\frac{{x - 6}}{{\sqrt x \left( {\sqrt x  + 3} \right)}} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x  + 3}}} \right):\frac{{2\left( {\sqrt x  - 3} \right)}}{{x + 1}}\\\;\;\; = \frac{{x - 6 - \left( {\sqrt x  + 3} \right) + \sqrt x }}{{\sqrt x \left( {\sqrt x  + 3} \right)}}.\frac{{x + 1}}{{2\left( {\sqrt x  - 3} \right)}}\\\;\;\; = \frac{{x - 6 - \sqrt x  - 3 + \sqrt x }}{{\sqrt x \left( {\sqrt x  + 3} \right)}}.\frac{{x + 1}}{{2\left( {\sqrt x  - 3} \right)}}\\\;\;\; = \frac{{\left( {x - 9} \right)\left( {x + 1} \right)}}{{2\sqrt x \left( {x - 9} \right)}} = \frac{{x + 1}}{{2\sqrt x }}.\end{array}\)

b) Tìm giá trị của x để \(P = 1.\)

Điều kiện: \(x > 0,\;x \ne 9.\)

\(\begin{array}{l}P = 1 \Leftrightarrow \frac{{x + 1}}{{2\sqrt x }} = 1 \Leftrightarrow x + 1 = 2\sqrt x  \Leftrightarrow x - 2\sqrt x  + 1 = 0\\ \Leftrightarrow {\left( {\sqrt x  - 1} \right)^2} = 0 \Leftrightarrow \sqrt x  - 1 = 0 \Leftrightarrow \sqrt x  = 1 \Leftrightarrow x = 1\;\;\left( {tm} \right).\end{array}\)

Vậy \(x = 1\) thì \(P = 1.\)

Ý kiến của bạn