[LỜI GIẢI] Tìm giá trị của m để phương trình ( 1 ) có hai nghiệm x1x2 thỏa mãn: ( x1^2 - mx1 + m )( x2^2 - mx2 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm giá trị của m để phương trình ( 1 ) có hai nghiệm x1x2 thỏa mãn: ( x1^2 - mx1 + m )( x2^2 - mx2

Tìm giá trị của m để phương trình ( 1 ) có hai nghiệm x1x2 thỏa mãn: ( x1^2 - mx1 + m )( x2^2 - mx2

Câu hỏi

Nhận biết

Tìm giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,\,{x_2}\) thỏa mãn: \(\left( {x_1^2 - m{x_1} + m} \right)\left( {x_2^2 - m{x_2} + m} \right) = 2.\)


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình có hai nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 \ne 0\\\Delta = {\left( {m + 1} \right)^2} - 4\left( {m - 4} \right) \ge 0\end{array} \right.\)

\( \Leftrightarrow {m^2} + 2m + 1 - 4m + 16 \ge 0 \Leftrightarrow {m^2} - 2m + 17 \ge 0\) (luôn đúng do \({m^2} - 2m + 17 = {\left( {m - 1} \right)^2} + 16 > 0,\forall m\))

Do đó phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\).

Ta có: \({x^2} - \left( {m + 1} \right)x + m - 4 = 0 \Leftrightarrow {x^2} - mx - x + m - 4 = 0 \Leftrightarrow {x^2} - mx + m = x + 4\)

Do \({x_1},{x_2}\) là nghiệm của \(\left( 1 \right)\) nên \(\left\{ \begin{array}{l}x_1^2 - m{x_1} + m = {x_1} + 4\\x_2^2 - m{x_2} + m = {x_2} + 4\end{array} \right.\)

Thay vào đẳng thức bài cho ta được \(\left( {{x_1} + 4} \right)\left( {{x_2} + 4} \right) = 2\)

\( \Leftrightarrow {x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) + 16 = 2 \Leftrightarrow {x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) + 14 = 0\,\,\left( 2 \right)\)

Theo định lý Vi – et \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 1\\{x_1}{x_2} = m - 4\end{array} \right.\), thay vào \(\left( 2 \right)\) ta được:

\(m - 4 + 4\left( {m + 1} \right) + 14 = 0 \Leftrightarrow 5m + 14 = 0 \Leftrightarrow m = - \frac{{14}}{5}\).

Vậy \(m = - \frac{{14}}{5}\) là giá trị cần tìm.

Chọn A.

Ý kiến của bạn