[LỜI GIẢI] Tìm các giá trị nguyên của m để phương trình x^2 - 4x + m + 1 = 0 có hai nghiệm phân biệt x1 và x2 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm các giá trị nguyên của m để phương trình x^2 - 4x + m + 1 = 0 có hai nghiệm phân biệt x1 và x2

Tìm các giá trị nguyên của m để phương trình x^2 - 4x + m + 1 = 0 có hai nghiệm phân biệt x1 và x2

Câu hỏi

Nhận biết

Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 4x + m + 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn \(x_1^3 + x_2^3 < 100.\)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

\({x^2} - 4x + m + 1 = 0\)

Ta có: \(a = 1;b = - 4;c = m + 1\)

\( \Rightarrow \Delta ' = {\left( { - 2} \right)^2} - m - 1 = 3 - m\)

Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)

Áp dụng hệ thức Vi-et cho phương trình ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = m + 1\end{array} \right.\)

Theo đề bài ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\,x_1^3 + x_2^3 < 100\\ \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left( {x_1^2 - {x_1}{x_2} + x_2^2} \right) < 100\\ \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right] < 100\\ \Leftrightarrow 4.\left[ {16 - 3\left( {m + 1} \right)} \right] < 100\\ \Leftrightarrow 16 - 3m - 3 < 25\\ \Leftrightarrow - 3m < 12 \Leftrightarrow m > - 4\end{array}\)

Kết hợp với điều kiện \(m < 3\) và \(m\) nguyên ta có: \(\left\{ \begin{array}{l} - 4 < m < 3\\m \in \mathbb{Z}\end{array} \right. \Rightarrow m \in \left\{ { - 3; - 2; - 1;\,\,0;\,\,1;\,\,2} \right\}\)

Vậy \(m \in \left\{ { - 3; - 2; - 1;\,\,0;\,\,1;\,\,2} \right\}\) thỏa mãn yêu cầu bài toán.

Chọn D.

Ý kiến của bạn