[LỜI GIẢI] Cho phương trình x^2 - 2(m - 2)x + 4 - 7m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm ph - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Cho phương trình x^2 - 2(m - 2)x + 4 - 7m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm ph

Cho phương trình x^2 - 2(m - 2)x + 4 - 7m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm ph

Câu hỏi

Nhận biết

Cho phương trình \({x^2} - 2(m - 2)x + 4 - 7m = 0\) (\(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn \(x_1^2 + \,x_2^2 = 10\).


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

\({x^2} - 2(m - 2)x + 4 - 7m = 0\) có 2 nghiệm phân biệt

\(\begin{array}{l} \Leftrightarrow \Delta ' > 0 \Leftrightarrow {\left( {m - 2} \right)^2} - 4 + 7m > 0\\ \Leftrightarrow {m^2} - 4m + 4 - 4 + 7m > 0\\ \Leftrightarrow {m^2} + 3m > 0 \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - 3\end{array} \right..\end{array}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 2} \right)\\{x_1}{x_2} = 4 - 7m\end{array} \right..\)

Theo đề bài ta có:

\(\begin{array}{l}x_1^2 + \,x_2^2 = 10 \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} = 10 \Leftrightarrow 4{(m - 2)^2} - 2(4 - 7m) = 10\\ \Leftrightarrow 4{m^2} - 2m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\,\,\,\,\,\left( {tm} \right)\\m =  - \frac{1}{2}\,\,\,\left( {ktm} \right)\end{array} \right..\end{array}\)

Vậy \(m = 1\) thỏa mãn điều kiện bài toán.

Chọn A.

Ý kiến của bạn