Giải phương trình :\({x^2} - 2x - 3 = \sqrt {x + 3} \)
Giải chi tiết:
Giải phương trình :\({x^2} - 2x - 3 = \sqrt {x + 3} \) (1)
ĐKXĐ: \(x + 3 \ge 0 \Leftrightarrow x \ge - 3\)
\(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} - x + \frac{1}{4} = x + 3 + \sqrt {x + 3} + \frac{1}{4} \Leftrightarrow {\left( {x - \frac{1}{2}} \right)^2} = {\left( {\sqrt {x + 3} + \frac{1}{2}} \right)^2}\\ \Leftrightarrow \left| {x - \frac{1}{2}} \right| = \sqrt {x + 3} + \frac{1}{2}\;\;\;\left( {do\;\;\sqrt {x + 3} + \frac{1}{2} > 0\;\;\forall x \ge - 3} \right).\\TH1:\;x - \frac{1}{2} = \sqrt {x + 3} + \frac{1}{2} \Leftrightarrow x - 1 = \sqrt {x + 3} \\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 \ge 0\\{x^2} - 2x + 1 = x + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\{x^2} - 3x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = \frac{{3 + \sqrt {17} }}{2}\\x = \frac{{3 - \sqrt {17} }}{2}\end{array} \right.\end{array} \right. \Leftrightarrow x = \frac{{3 + \sqrt {17} }}{2}\;\;\;\left( {tm} \right)\\TH2:\;x - \frac{1}{2} = - \sqrt {x + 3} - \frac{1}{2} \Leftrightarrow - x = \sqrt {x + 3} \\ \Leftrightarrow \left\{ \begin{array}{l} - x \ge 0\\{x^2} = x + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 0\\{x^2} - x - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 0\\\left[ \begin{array}{l}x = \frac{{1 + \sqrt {13} }}{2}\\x = \frac{{1 - \sqrt {13} }}{2}\end{array} \right.\end{array} \right. \Leftrightarrow x = \frac{{1 - \sqrt {13} }}{2}\;\;\left( {tm} \right)\end{array}\)
Vậy \(x = \frac{{3 + \sqrt {17} }}{2}\) hoặc \(x = \frac{{1 - \sqrt {13} }}{2}.\)
Chọn A.