Cho parabol \(\left( P \right):\;\;y = 2{x^2}\) và đường thẳng \(\left( d \right):\;\;y = 2x + m\) (m là tham số).
a) Vẽ parabol \(\left( P \right).\)
b) Với những giá trị nào của \(m\) thì \(\left( P \right)\) và \(\left( d \right)\) chỉ có một điểm chung. Tìm tọa độ điểm chung đó.
Giải chi tiết:
Cho parabol \(\left( P \right):\;\;y = 2{x^2}\) và đường thẳng \(\left( d \right):\;\;y = 2x + m\) (m là tham số).
a) Vẽ parabol \(\left( P \right).\)
Ta có bảng giá trị:

Vậy đồ thị hàm số \(\left( P \right):\;\;y = 2{x^2}\) là đường cong đi qua các điểm: \(\left( { - 2;\;8} \right),\;\;\left( { - 1;\;2} \right),\;\left( {0;\;0} \right),\;\;\left( {1;\;2} \right),\;\left( {2;\;8} \right).\)

b) Với những giá trị nào của \(m\) thì \(\left( P \right)\) và \(\left( d \right)\) chỉ có một điểm chung. Tìm tọa độ điểm chung đó.
Phương trình hoành độ giao điểm của hai đồ thị hàm số là:
\(2{x^2} = 2x + m \Leftrightarrow 2{x^2} - 2x - m = 0\;\;\;\left( * \right)\)
Số giao điểm của đồ thị (P) và đường thẳng (d) cũng chính là số nghiệm của phương trình (*)
Đồ thị hàm số \(\left( P \right)\) và \(\left( d \right)\) chỉ có một điểm chung\( \Leftrightarrow \) phương trình \(\left( * \right)\) có nghiệm kép \( \Leftrightarrow \Delta ' = 0\)
\( \Leftrightarrow 1 + 2m = 0 \Leftrightarrow m = - \frac{1}{2}.\)
Với \(m = - \frac{1}{2}\) ta có: \(\left( * \right) \Leftrightarrow 2{x^2} - 2x + \frac{1}{2} = 0 \Leftrightarrow 4{x^2} - 4x + 1 = 0 \Leftrightarrow {\left( {2x - 1} \right)^2} = 0 \Leftrightarrow x = \frac{1}{2}.\)
\( \Rightarrow y = 2.{\left( {\frac{1}{2}} \right)^2} = 2.\frac{1}{4} = \frac{1}{2} \Rightarrow \)tọa độ điểm chung của hai đồ thị là \(M\left( {\frac{1}{2};\;\frac{1}{2}} \right).\)
Vậy với \(m = - \frac{1}{2}\) thỏa mãn bài toán và điểm chung duy nhất của hai đồ thị là \(M\left( {\frac{1}{2};\;\frac{1}{2}} \right).\)