Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn (O). Kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Một đường thẳng d đi qua M cắt đường tròn tại hai điểm C và D (C nằm giữa M và D, d không đi qua tâm O).
a) Chứng minh rằng: MA2 = MC.MD
b) Gọi H là giao điểm của AB và MO. Chứng minh tứ giác CHOD nội tiếp đường tròn.
c) Cho MC.MD = 144 và OM = 13 (độ dài các đoạn thẳng đã cho có cùng đơn vị đo ). Tính độ dài đường tròn (O) và diện tích đường tròn (O).
Cách giải nhanh bài tập này